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Abstract

Range-wide species conservation efforts are facilitated by spatially explicit esti-

mates of habitat suitability. However, species-environment relationships often

vary geographically and models assuming geographically constant relation-

ships may result in misleading inferences. We present the first range-wide hab-

itat suitability model (HSM) for the federally threatened eastern indigo snake

(Drymarchon couperi) as a case study illustrating an approach to account for

known latitudinal variation in habitat associations. Specifically, we modeled

habitat suitability using interactive relationships between minimum winter

temperature and several a priori environmental covariates and compared our

results to those from models assuming geographically constant relationships. We

found that multi-scale models including interactive effects with winter tempera-

ture outperformed single-scale models and models not including interactive

effects with winter temperature. Our top-ranked model had suitable range-wide

predictive performance and identified numerous large (i.e., ≥1000 ha) potential

habitat patches throughout the indigo snake range. Predictive performance was

greatest in southern Georgia and northern Florida likely reflecting more restric-

tive indigo snake habitat associations in these regions. This study illustrates how

modeling interactive effects between temperature and environmental covariates

can improve the performance of HSMs across geographically varying environ-

mental gradients.
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INTRODUCTION

The importance of landscape-scale conservation to main-
tain population viability and connectivity has been
increasingly recognized (Hoctor et al., 2000; Watson
et al., 2014), particularly as anthropogenic landscape
changes continue to degrade and fragment suitable habi-
tat (Vitousek et al., 1997). Broad-scale conservation
efforts are increasingly reliant on spatially explicit esti-
mates of species occurrence, habitat suitability,

connectivity, and population viability to inform on-the-
ground management actions (Cabeza & Moilanen, 2001;
Chetkiewicz & Boyce, 2009; Grant & Bradbury, 2019).
However, many imperiled species have cryptic behaviors,
low densities, or small population sizes making it difficult
to collect ecological data necessary for developing and
implementing conservation strategies (Maxwell &
Jennings, 2005). Opportunistic observations can provide
critical information for such species, but careful consider-
ation must be given to various biases or spatial
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deficiencies in these data (Bradter et al., 2018; Kramer-
Schadt et al., 2013).

Habitat suitability models (HSMs) are regularly used to
guide species conservation efforts by providing spatially
explicit estimates of habitat suitability (Franklin, 2010;
Guisan & Thuiller, 2005). Predicted suitability surfaces from
HSMs may be used to quantify the amount of habitat
already protected and prioritize land conservation strategies
(Crawford et al., 2020; Fajardo et al., 2014; Rodriguez
et al., 2007), identify potential mortality hotspots (Zeller,
Wattles, et al., 2018), and prioritize future reintroduction
efforts (Schadt et al., 2002). As HSMs can be developed
using only species occurrence data (e.g., presence-only
models) (Elith & Leathwick, 2009; Franklin, 2010), they are
regularly used for broad-scale conservation applications.
However, several challenges often accompany the use of
HSMs, most notably the potential for spatial biases in
opportunistically collected occurrence data (Kramer-Schadt
et al., 2013; Phillips et al., 2009). For example, opportunistic
observations may be more prevalent along roads or near
access points (Reddy & Davalos, 2003). Several approaches
exist for minimizing the inferential consequences of such
sampling biases by reducing the density of presence loca-
tions (Kramer-Schadt et al., 2013; Veloz, 2009) or altering
the distribution of background or available locations based
on realized or inferred distributions of sampling effort to
approximate sampling biases (Merow et al., 2013; Phillips
et al., 2009; Vollering et al., 2019).

Another challenge in the development of broad-scale
HSMs is the presence of geographic variation in species-
environment relationships due to regional differences in
climate, topography, or vegetation communities (Shirk
et al., 2014; Doherty et al., 2016; Wan et al., 2017). Such
differences represent an extension of the broader issue of
transferability in HSMs, which is a widely recognized
problem when predicting to novel spatiotemporal condi-
tions (Guisan & Thuiller, 2005; Yates et al., 2018). Assum-
ing stationarity in species-environment relationships,
particularly over regional or continental extents, may
result in misleading inferences and reduced model perfor-
mance (Murphy & Lovett-Doust, 2007). Addressing non-
stationarity in species-environment relationships can
involve estimating separate HSMs for different eco-
regions, study areas, or management units (Crawford
et al., 2020; Murphy & Lovett-Doust, 2007) or incorporat-
ing interactive effects between environmental covariates
and discrete regions (Zanini et al., 2009). However, these
approaches either require merging spatial predictions
from multiple models or may substantially increase model
complexity. If species-environment relationships vary
consistently across an environmental gradient ordered
along a single geographic axis (e.g., latitude), then such
variation may be accounted for using interactive effects

between environmental covariates and the geographic
axis (Becker et al., 2019). Yet, including spatially varying
interactive effects in HSMs may increase the risk of model
over-fitting and result in poor predictive performance if
results are extrapolated to novel spatiotemporal condi-
tions (Merow et al., 2014; Yates et al., 2018). To date, rela-
tively little attention has been paid to directly modeling
geographic variation in species-habitat relationships
(Becker et al., 2019; Merow et al., 2014).

In this study, we developed the first range-wide HSM
for the U.S. federally threatened eastern indigo snakes
(Drymarchon couperi; hereafter referred to as DRCO) as a
case study of modeling habitat suitability for an imperiled
species with limited data availability and known latitudi-
nal variation in habitat associations. DRCO are large
(>2.4 m) colubrid snakes native to the southeastern
U.S. (Enge et al., 2013; Stevenson et al., 2009) that exhibit
marked latitudinal variation in spatial and habitat ecol-
ogy across their range. During winters in the northern
portion of their range (i.e., southern Georgia and north-
ern Florida), DRCO are restricted to patches of xeric soils
(i.e., sandhills) containing gopher tortoises (Gopherus
polyphemus), whose burrows are used as refugia (Bauder
et al., 2017; Hyslop et al., 2009; Stevenson et al., 2003).
During the summer, DRCO in this region use a diversity
of upland and wetland habitats; therefore, they may
migrate 5–7 km from overwintering sites (Hyslop
et al., 2014). In contrast, DRCO become less dependent
on G. polyphemus burrows with increasing winter tem-
peratures; therefore, within peninsular Florida region,
DRCO may occupy habitats devoid of G. polyphemus
(Bauder et al., 2016a; USFWS, 2019). Within peninsular
Florida, DRCO use a greater diversity of habitats
throughout the year and may occur in varying degrees of
urban and agricultural development (Bauder et al., 2018;
USFWS, 2019).

Therefore, we tested whether modeling environmen-
tal covariates interactively with winter temperature
would improve the performance of a range-wide HSM for
DRCO. Previous research has also shown that DRCO
show scale-specific responses to habitat features (Bauder
et al., 2018, 2020). Hence, we predicted that multi-scale
models with latitudinally varying environmental relation-
ships would outperform single-scale models and models
with constant environmental relationships.

METHODS

Study area

We defined the extent of our modeling area to approxi-
mate the contemporary distribution of DRCO (Figure 1;
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Enge et al., 2013). Additional details are provided in
Appendix S1. Natural vegetation communities occupied
by DRCO within this area included xeric sandhill and
scrub, mesic pine flatwoods, hardwood hammocks, coastal
hammocks and dunes, and forested and non-forested wet-
lands. Anthropogenically altered communities were wide-
spread and included urban and rural developments,
agriculture, improved pasture, citrus, and commercial forest
stands. Vegetation communities predominately restricted to
southern Florida included mangrove swamps, Everglades
marshes and stormwater control wetlands, and sugar cane.

Data selection

We compiled observations of DRCO from multiple
sources, including previous studies (Enge et al., 2013;
Moulis, 1976), museum records, research and monitoring
projects, environmental impact assessments, and state
and federal agency databases (Appendix S1, Table S1).
We examined each observation to determine its veracity,
retaining only those that were verified (i.e., with a photo
or video at the time of submission) or reported from

reliable sources during 2000–2020 (n = 3334). Further-
more, we randomly subsampled observations to maintain
a minimum inter-observation distance of 500 m (approxi-
mate radius of a DRCO home range in peninsular Flor-
ida; Bauder et al., 2018) to reduce the effects of spatial
clustering and autocorrelation among observations
(Kramer-Schadt et al., 2013; Veloz, 2009). This resulted in
a total of 1215 DRCO observations for developing our
HSM (Figure 1).

Environmental data

We considered several environmental covariates that we
hypothesized a priori would influence DRCO habitat
suitability based on previous research (Table 1). Addi-
tional details are provided in Appendix S1. Covariates
included land cover classes (undeveloped upland, wet-
land, urban, and agriculture), soil drainage, topographic
position index (TPI; a measure of topographic complex-
ity), canopy and vegetation cover (enhanced vegetation
index [EVI]), and fire frequency. As DRCO are posi-
tively associated with habitat heterogeneity and edge

F I GURE 1 Map of habitat modeling study area (a, black outline) based on the contemporary distribution of the eastern indigo snake

(Drymarchon couperi) and predicted relative habitat suitability (b). Black points represent presence locations from 2000–2020 used to develop

the habitat suitability model. We also present the four eastern indigo snake management regions defined by the U.S. Fish and Wildlife

Service in the Species Status Assessment (USFWS, 2019)
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(Bauder et al., 2018, 2020), we also considered upland
and wetland edges and the standard deviations of TPI,
canopy cover, and EVI within moving windows as

measures of habitat heterogeneity. Finally, we used
mean minimum winter (December 1–February 27) tem-
perature during 1981–2010 from the Climate

TAB L E 1 Environmental covariates and a priori hypothesized relationships considered for an eastern indigo snake (Drymarchon

couperi) range-wide habitat suitability model

Covariate Description Hypothesized relationship References

Undeveloped
upland

Undeveloped non-wetland land
covers (e.g., scrub, sandhill,
upland and coastal hammocks,
flatwoods, prairie, shrub,
commercial forest, unimproved
pasture/woodland, rural)

Positive Bauder et al. (2018), Enge
et al. (2013), Hyslop et al. (2014)

Undeveloped
upland edge

Undeveloped upland edge pixels Positive Bauder et al. (2018, 2020)

Wetland* Forest and non-forested fresh and
saltwater wetlands, canals, and
ditches

Positive at intermediate levels (Q),
weakest at warmer winter
temperatures

Hyslop et al. (2014), USFWS (2019)

Wetland edge Wetland edge pixels Positive Bauder et al. (2018, 2020)

Urban High, medium, and low density
urban, roads, barren, extractive

Negative, weakest at warmer winter
temperatures

Bauder et al. (2018) Breininger
et al. (2004, 2012)

Agriculture Citrus, sugarcane, improved
pasture, and other commercial
agriculture

Negative, weakest at warmer winter
temperatures

Bauder et al. (2018)

EVI Enhanced vegetation index
(June–August)

Positive DRCO are positively associated
with vegetated habitats

SD EVI Standard deviation of EVI Positive Bauder et al. (2018, 2020)

Canopy cover* Percent canopy cover (CC) Negative and positive at cooler and
warmer winter temperatures,
respectively. Strongest positive
effect at intermediate levels (Q).

Hyslop et al. (2009, 2014)

SD CC Standard deviation of CC Positive DRCO are positively associated
with habitat heterogeneity

Deciduous index Difference between May–July and
December–February EVI
divided by the maximum EVI
(1999–2016, Crawford
et al., 2020)

Positive at intermediate levels (Q) Hyslop et al. (2009, 2014)

Fire frequency* Proportion of years an area burned
during 2001–2016 (MODIS) and
the presence of a burn during
2006–2016 (LANDFIRE,
Crawford et al., 2020)

Positive, strongest at cooler winter
temperatures

Hyslop et al. (2009, 2014)

Soil drainage* Soil drainage class (well-,
moderately-, or poorly drained,
Crawford et al., 2020)

Positive, strongest at cooler winter
temperatures

Bauder et al. (2017), Hyslop
et al. (2009, 2014)

TPI* Topographic position index using
500 m moving window
(Crawford et al., 2020)

Positive at intermediate levels,
strongest at cooler winter
temperatures

DRCO are strongly associated with
upland habitats

SD TPI Standard deviation of TPI Positive DRCO are positively associated
with habitat heterogeneity

Notes: Interactive terms between winter temperature and each covariate were considered and interactive effects with undeveloped upland were considered for
covariates marked with an asterisk. All covariates were modeled using linear relationships except for those modeled as quadratic effects (Q).
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Engine (2019) to model latitudinal variation in DRCO
habitat associations. All rasters were resampled to 30-m
pixels for analyses. We hypothesized that associations
with structurally open upland habitats with well-
drained soils and frequent fires would be strongest at
cooler temperatures, where DRCO are more closely
associated with G. polyphemus (Bauder et al., 2017;
Hyslop et al., 2009, 2014). We also hypothesized that
negative associations with urban, agriculture, and wet-
land would be weakest at warmer temperatures where
DRCO are known to use a greater diversity of habitats
(Bauder et al., 2018; USFWS, 2019).

Selecting background points

Sampling biases in species observations can result in mis-
leading inferences from HSMs, yet selecting background
points to reflect those sampling biases can improve model
performance (Vollering et al., 2019). As DRCO are frequently
detected along roads or observed as road kill, we used the
2016 TIGER roads layer (U.S. Census Bureau, 2016) to mea-
sure the distances from each subsampled DRCO observation
to the nearest road (excluding interstates). The proportion of
DRCO observations in 0 m and 1–30 m distance bins were
higher than those of random background points (0.29
vs. 0.07 and 0.15 vs. 0.10 respectively). Therefore, we selected
500,000 background points (497,649 after excluding points
with missing values from one or more covariate raster layers)
from across our study area while ensuring equal proportions
of DRCO observations and background points in the 0 m
and 1–30 m distance bins.

Selecting the characteristic scale

We used a pseudo-optimization approach (McGarigal
et al., 2016) to identify the spatial scale with the greatest
empirical support (i.e., the characteristic scale; Holland
et al., 2004) for each environmental covariate. We consid-
ered scales of 250, 500, 1000, 2500, and 5000 m (i.e., radii
of circular uniform kernels) to capture the movement
potential and home range sizes of DRCO across their
range (Bauder et al., 2020; Hyslop et al., 2014). Bauder
et al. (2020) reported that circular buffers of 242, 667, and
1610 m radii approximated the 2.5th, 50th, and 97.5th
quantiles of DRCO home range sizes in peninsular Flor-
ida with smaller home range sizes in more urban land-
scapes. Hyslop et al. (2014) found that DRCO in southern
Georgia would move 5000–7500 m from overwintering
sandhills to summer habitats. We also measured each
covariate directly from the 30 m covariate rasters. We

compared covariates across scales by fitting generalized
linear models (GLMs) with binomial error distributions
containing each covariate at a single scale. We selected
the scale with the lowest AIC as the characteristic scale
and identified characteristic scales for models with and
without an interactive effect between the covariate and
winter temperature. Then, we tested for collinearity
between all covariates at their characteristic scales. We
excluded the upland edge because of its relatively high
collinearity with the upland (r = 0.71). Collinearity was
low to moderate for all other covariates at their charac-
teristic scales (jrj ≤ 0.68).

Model fitting

We fit our models using binomial GLM in R (R Core
Team, 2019) and weighted our background points so that
their summed weights equaled to the summed weights of
the presence points (Barbet-Massin et al., 2012). We
emphasize that the models’ predicted values should not be
interpreted as probabilities but as indices of relative habitat
suitability. We used a modified backward covariate selec-
tion approach to build each model. First, we iteratively
dropped higher-order (i.e., interactive or quadratic) terms
until no improvement in AIC occurred. We then iteratively
dropped main-effects terms that were not present in a
retained higher-order term. If a main-effects term was
dropped, we iteratively dropped higher-order terms before
proceeding to drop additional main-effects terms to retain
higher-order terms whose corresponding main-effects were
also retained. We ceased dropping terms when no improve-
ment in model AIC occurred.

We fit single-scale models, where each covariate was
measured at the same spatial scale, and pseudo-
optimized multi-scale models including each covariate at
its characteristic scale. We fit each model twice, including
or excluding interactive effects of temperature, for a total
of 14 models. Given the large home-range sizes of DRCO
and their high movement potential, we used the 250-m
scale as the smallest scale in our multi-scale models. This
effectively treats the home range, rather than points
within the home range, as the sampling unit meaning
that per-pixel suitability values should be interpreted as
the suitability of a home range centered on that pixel.
Moreover, DRCO in peninsular Florida showed very low
inter-sexual home range overlap (Bauder et al., 2016b),
although winter spatial overlap can be high for DRCO in
southern Georgia while individuals use xeric sandhills for
overwintering (Hyslop et al., 2014). Therefore, we con-
sider our HSMs analogous to first-order habitat selection
(Johnson, 1980) describing relative habitat suitability for
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at least one DRCO rather than a second- or third-order
resource selection function (RSF) describing the relative
intensity of home ranges or individual animal locations
(Fieberg et al., 2021).

Model validation

We used four cross-validation approaches to evaluate
model predictive performance. The first was a random
5-fold cross-validation. As this approach may overestimate
predictive performance (Radosavljevic & Anderson, 2014;
Roberts et al., 2017), we also conducted two spatially
blocked cross-validations. First, we divided our modeling
area into five east–west bins to include the majority of the
north–south environmental gradient within each bin
(Roberts et al., 2017). Second, we divided our modeling
area into five north–south bins using 5.0, 7.5, 10.0, and
12.5�C as bin boundaries, which also allowed us to evalu-
ate the extrapolation capability of a model. We evaluated
model discriminatory ability using the area-under-the-
curve (AUC) of the receiver operating characteristic (ROC)
(Fielding & Bell, 1997), despite its limited utility for
presence-only models (Hirzel et al., 2006), for comparison
with other species distribution models using this metric.
We evaluated model calibration with the Continuous

Boyce Index (CBI; Boyce et al., 2002, Hirzel et al., 2006),
which quantifies the monotonicity between the ratio of
predicted to expected points (P:E) and the midpoints of
multiple overlapping suitability bins. Values of the CBI
closer to one represent increasingly well-calibrated models,
although non-linear relationships indicate reduced resolu-
tion (i.e., information content) (Hirzel et al., 2006). We
used 10,000 random background points selected uniformly
across our study area to calculate CBI and create CBI plots
(i.e., plots of P:E against habitat suitability) with the default
arguments in the ecospat.boyce function from the ECOSPAT

package (Broennimann et al., 2021). Finally, we conducted
a 3-fold cross-validation across the USFWS (U.S. Fish and
Wildlife Service) regions to further compare spatial varia-
tion in model performance. We used two regions for model
training and calculated AUC and CBI for the third region.

Habitat suitability mapping

We predicted relative habitat suitability across the DRCO
historical distribution (Figure 1). We first bounded all
covariate values outside our modeling area by the mini-
mum or maximum values present in the model-fitting
dataset (contemporary range) to reduce any effects of
extrapolation to the historic portion of the indigo snake

TAB L E 2 Rankings and predictive performances of eastern indigo snake (Drymarchon couperi) range-wide habitat suitability models

Area under the curve Continuous Boyce index

Scale
Temperature
interaction AIC D 2 R

EW
bins

NS
bins R

EW
bins

NS
bins

No. temperature
interactions

Multi-scale Yes 1329.2 0.23 0.803 0.787 0.756 1.000 1.000 0.998 4

Multi-scale No 1342.5 0.21 0.794 0.775 0.769 0.999 0.998 0.990 NA

1000 m Yes 1351.9 0.21 0.792 0.770 0.691 1.000 0.998 0.953 6

500 m Yes 1356.7 0.21 0.790 0.774 0.689 0.999 0.999 0.986 8

250 m Yes 1359.2 0.21 0.793 0.778 0.728 1.000 0.998 0.975 8

2500 m Yes 1378.2 0.19 0.782 0.755 0.645 0.993 0.991 0.891 7

1000 m No 1386.9 0.18 0.779 0.760 0.738 0.994 0.997 0.975 NA

5000 m Yes 1390.2 0.19 0.775 0.745 0.627 0.989 0.997 0.857 7

250 m No 1393.6 0.19 0.780 0.766 0.758 1.000 1.000 0.990 NA

500 m No 1394.0 0.18 0.776 0.759 0.747 1.000 0.999 0.990 NA

2500 m No 1414.8 0.16 0.769 0.749 0.712 0.981 0.985 0.979 NA

5000 m No 1430.5 0.15 0.757 0.720 0.673 0.991 0.987 0.981 NA

Base Yes 1441.5 0.18 0.769 0.754 0.693 0.999 0.999 0.998 5

Base No 1481.2 0.15 0.750 0.733 0.717 0.999 1.000 0.997 NA

Notes: The scales in this table represent the scale at which all covariates in the model were measured except the multi-scale models in which scale was pseudo-

optimized for each covariate. Temperature interaction refers to whether or not an interactive effect of temperature was allowed with each covariate. D 2 is
proportion of deviance explained. Models were cross-validated using either random 5-fold cross-validation (R) or 5-fold cross-validation with geographic bins.
North–south (NS) bins reflected a north–south temperature gradient and East–west (EW) bins reflected an east–west gradient with each bin spanning
approximately the entire latitudinal extent of the indigo snake distribution.
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F I GURE 2 Legend on next page.
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range. We also created a categorical habitat suitability
map representing unsuitable, low, medium, and high
suitability to provide an alternative representation of hab-
itat suitability in the presence of non-linear CBI plots as
described above in Model validation. We use the word
“unsuitable” in a relative sense and do not mean to imply
that DRCO are absent in areas denoted as unsuitable. We
defined the threshold between unsuitable and low to
include 95% of our DRCO observations (i.e., 95% sensitiv-
ity). The threshold between low and medium was the
suitability value at which the predicted:observed ratio in
the CBI plot was one (Hirzel et al., 2006). The threshold
between medium and high approximated an inflection

point within the CBI plot (Hirzel et al., 2006). We deter-
mined these thresholds using our three cross-validation
approaches and selected the median value across
approaches as the final threshold value. We delineated all
contiguous patches that were low, medium, or high, medium
or high, or only high suitability that were ≥ 250, 1000, or
5000 ha to account for varying estimates of the minimum
area needed for viable DRCO populations (1000 ha,
Moler, 1992; >8000 ha, Bauder, 2019). To account for poten-
tial barrier effects of roads (Bauder et al., 2018; Breininger
et al., 2004, 2012), we split patches that were bisected by
interstates. Finally, we calculated the total patch area across
size and suitability classes for each USFWS region and the
proportion of habitat patch area for each size that overlapped
conservation land using the U.S. Geological Survey Protected
Areas Database (U.S. Geological Survey, 2020).

RESULTS

To build our HSM, we used 438, 99, and 678 DRCO
observations from southeast Georgia, north Florida, and
peninsular Florida, respectively. The characteristic scale
of 11 of our 14 covariates was 250 m when an interactive
effect of temperature was included (Appendix S1, Table S2).
Three covariates (agriculture, fire frequency, and urban)
had characteristic scales ≥1000 m. Seven of these 14
covariates had characteristic scales ≥1000 m when exclud-
ing the interactive effect of temperature.

The multi-scale model with pseudo-optimized scales
and interactive effects of temperature was the top-ranked
model followed by the multi-scale model without temper-
ature effects (Table 2). Single-scale models including tem-
perature interactions always outperformed their
corresponding models without temperature interactions
(Table 2). Suitability was positively associated with upland,
SD of TPI, wetland edge, and SD of EVI. It was negatively
associated with urban and wetland regardless of the tem-
perature (Figure 2). The interactive effect with temperature
was retained in the multi-scale model for four covariates
(soil drainage, fire frequency, deciduous index, and agricul-
ture; Appendix S1, Table S3). Five to eight temperature
interactive effects were retained in the single-scale models
(Table 2). The association between soil drainage and fire
frequency was strongly positive at cooler winter tempera-
tures and virtually absent in southern Florida. In contrast,
agriculture had a strong positive effect in southern Florida.

F I GURE 2 Predicted relationships between eastern indigo snake (Drymarchon couperi) relative habitat suitability and landscape

covariates at their characteristic scales with and without an interactive effect of temperature. Predictions were made using the final multi-

scale pseudo-optimized model holding all other covariates constant at their mean values. Temperature values represent the midpoint

temperatures within the five temperature bins used in the cross-validation analysis

TAB L E 3 Regional predictive performance of eastern indigo

snake (Drymarchon couperi) habitat suitability models through

regional cross-validation

Multi-scale with
temperature
interactions

Multi-scale with
no temperature
interactions

AUC CBI AUC CBI

USFWS region

Georgia 0.828 0.995 0.783 0.990

North Florida 0.812 0.964 0.820 0.836

Peninsular Florida 0.755 0.862 0.692 0.820

Temperature bin

2.86–5.0�C 0.830 0.998 0.777 0.987

5.0–7.5�C 0.794 0.972 0.791 0.888

7.5–10.0�C 0.784 0.971 0.813 0.987

10.0–12.5�C 0.740 0.991 0.765 0.995

12.5–17.7�C 0.779 0.939 0.784 0.903

East–west bin

1 0.814 0.991 0.806 0.968

2 0.856 0.986 0.825 0.988

3 0.813 0.994 0.797 0.982

4 0.729 0.995 0.742 0.993

5 0.755 0.988 0.730 0.836

Notes: Results are presented from the two pseudo-optimized multi-scale

models with and without interactive effects of temperature. All statistics
were calculated using the specified region as testing data and data from all
other regions as training data. USFWS Regions are as defined in the Species
Status Assessment (USFWS, 2019) and east–west bin numbers go from east

to west.
Abbreviations: AUC, area under the curve; CBI, continuous Boyce Index.
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Moreover, the quadratic effect of the deciduous index was
also strongest in that region (Figure 2). Habitat suitability
in areas with large amounts of upland land cover was
highest when canopy cover was low, whereas suitability
was highest when canopy cover was high in areas with no
upland land cover (Figure 2).

The multi-scale model generally had the highest
predictive performance across cross-validation approaches

(Table 2). Predictive performance was highest using
random 5-fold cross-validation and lowest when cross-
validating by north–south bins (Table 3). Model predic-
tions were generally the best in southern Georgia and
poorest in southern peninsular Florida. Performance was
as good or better using the pseudo-optimized model with
temperature interactions compared to the pseudo-optimized
model without temperature interactions (Table 3).

F I GURE 3 The amount and percent (shown above bars) of potentially suitable eastern indigo snake (Drymarchon couperi) habitat

patches protected in the four U.S. Fish and Wildlife Service Conservation Regions (a: Georgia, b: Panhandle, c: north Florida, d: peninsular

Florida; USFWS, 2019). Habitat patches were defined using three minimum patch size thresholds (250, 1000, and 5000 ha) and three

minimum suitability thresholds (low, medium, and high suitability)
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We used thresholds of 0.21, 0.47, and 0.71 to define
our suitability categories (Appendix S1, Figure S1).
Highly suitable habitats were mostly concentrated along
riverine sand ridges in southern Georgia and central pen-
insular Florida, while suitability was lowest in large
urbanized and wetland areas (e.g., Okefenokee Swamp,
Everglades; Figure 1). The Florida Panhandle contained a
much higher percentage of potentially suitable habitat
than other regions (Appendix S1, Table S4). The percent-
age of protected potential habitat patches was relatively
insensitive to patch size but decreased markedly as lower
suitability classes were considered (Figure 3).

DISCUSSION

Our study showed that considering interactive relation-
ships between a priori selected environmental covariates
and temperature in a HSM can successfully capture geo-
graphic variation in species-habitat associations. Both
multi- and single-scale HSMs allowing interactive effects of
winter temperature with environmental covariates had
greater empirical support and predictive performance than
models without these interactive effects. While previous
research across taxa has illustrated the superior predictive
performance of multi-scale HSMs (Macdonald et al., 2019;
Mateo-Sanchez et al., 2016; Wan et al., 2018), we found
that even single-scale models with interactive temperature
effects always outperformed their corresponding model
without interactive temperature effects. This suggests that
considering both multi-scale and geographical variation in
species-habitat associations is important for improving the
performance of HSMs. The strong performance of our
multi-scale model with interactive temperature effects
when cross-validating across north–south bins across the
temperature gradient suggests that this model was not
overfitted. Therefore, it was less susceptible to poor out-of-
sample predictive performance. Furthermore, latitudinal
variations in predicted covariate relationships were consis-
tent with our a priori hypotheses. For example, covariates
indicative of potential G. polyphemus habitat, specifically
soil drainage and fire frequency, showed their strongest
relationships at cooler temperatures, reflecting the depen-
dence of DRCO on G. polyphemus burrows in these regions
(Bauder et al., 2017; Hyslop et al., 2009, 2014; Stevenson
et al., 2003). Additionally, DRCO were negatively associ-
ated with agriculture in southern Georgia and northern
Florida but positively associated with agriculture in south-
ern Florida, consistent with DRCO habitat use of canal
banks, and abandoned citrus groves in this region
(USFWS, 2019). We suggest that modeling geographic vari-
ation in species-habitat relationships using interactive
effects with factors varying across a study gradient

(e.g., temperature) offers a useful approach for modeling
habitat suitability across diverse environments within a sin-
gle model.

Several covariates showed consistent relationships with
suitability independent of temperature. In particular,
upland and urban showed strong positive and negative
effects, respectively, on DRCO habitat suitability. However,
the consistently negative association with wetland indepen-
dent of temperature was surprising given observations of
DRCO use of wetlands (Hyslop et al., 2014). One possible
explanation is that many of our Georgia observations came
from winter DRCO monitoring projects when DRCO are
most closely associated with xeric sandhills and relatively
easy to detect (Bauder et al., 2017; Stevenson et al., 2003).
As a result, our model may be biased towards winter
DRCO habitats in southern Georgia and northern Florida
in comparison to habitats in peninsular Florida. Sampling
effort across sandhills in southern Georgia was highly vari-
able, both temporally and spatially, during the years in
which our data were collected, limiting our ability to
account for spatial variation in sampling effort. Neverthe-
less, habitat suitability was positively associated with wet-
land edge, consistent with prior research indicating that
DRCO may predominantly select mosaics of upland and
wetland habitats (Bauder et al., 2018, 2020). Therefore, we
encourage caution when inferring summer habitat suitabil-
ity from our model in the northern part of the DRCO range
as well as additional research to better understand the rela-
tive importance of wetland area versus configuration for
DRCO. More broadly, the potential regional biases in sam-
pling efforts illustrate the challenges of using opportunistic
data when modeling species-habitat associations in the
presence of spatial variation in sampling bias.

Model predictive performance varied geographically,
being strongest in southern Georgia and weakest in central
and southern peninsular Florida. We suggest that this pat-
tern largely reflects latitudinal variation in DRCO habitat
associations, specifically the more stringent habitat associa-
tions of DRCO in southern Georgia and northern Florida
with regards to G. polyphemus burrows. The specific
habitat requirements of G. polyphemus in these regions
(i.e., well-drained soils, open canopy, sufficient ground cover
forage) (Auffenberg & Franz, 1982; Mushinsky et al., 2006)
likely increased model discriminatory ability with regards to
suitable DRCO habitat. In contrast, DRCO in peninsular
Florida, particularly the southern third, use a greater diver-
sity of habitat types including unimproved cattle pasture,
mangroves, canal banks, and urban edges (Bauder
et al., 2018; USFWS, 2019). This trend towards increasing
habitat generalization with decreasing winter temperature
likely made it difficult for our model to discriminate
between potentially suitable and unsuitable DRCO habitats.
Similarly, Mateo-Sanchez et al. (2016) found that HSMs for
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the brown bear (Ursus arctos) performed poorly during sea-
sons when bears used a greater diversity of environmental
conditions. While such plasticity in DRCO habitat require-
ments is likely an asset for their persistence within peninsu-
lar Florida, it also increases the challenges of modeling
habitat suitability in this region, which may have important
implications for regulatory and permitting efforts. Therefore,
we encourage additional monitoring of DRCO in peninsular
Florida, particularly in anthropogenically dominated land-
scapes, to better understand DRCO occurrence and habitat
associations in this region.

We acknowledge additional limitations when drawing
inferences from our results. First, our data were mainly
opportunistic and may reflect biases associated with accessi-
bility. Increasing the number of background points in close
proximity to roads to match the frequency that indigo snakes
were observed near roads likely mitigated this bias by captur-
ing any differences among covariates that occurred near
roads when compared to areas farther away from roads. Sec-
ond, our data were relatively sparse within southern Florida
compared to southern Georgia. Given our model’s poorer
predictive performance and greater DRCO habitat use-
plasticity in this region, we encourage caution when applying
our model to this region. Third, our HSM did not incorporate
the effects of population isolation, recolonization, or localized
extinction. These demographic processes may result in mis-
matches between a species’ present occurrence and habitat
conditions (Waldron et al., 2008; Welch et al., 2007).
Finally, given the challenges of detecting DRCO, particu-
larly in peninsular Florida (Bauder et al., 2017; Bauder &
Barnhart, 2014), we recommend not using our HSM to
infer the presence or absence of DRCO at any specific site
but rather as a potential tool to prioritize sites for more
intensive inventory and monitoring efforts.

Our results provide the first empirical range-wide
HSM for DRCO, which can assist and guide future con-
servation efforts by prioritizing future land protection
efforts, identifying potential linkages among existing
protected lands, and helping identify sites for ongoing
reintroduction efforts (USFWS, 2019). Our results and
previous research emphasize the importance of large
tracts of heterogeneous upland habitats for DRCO. While
our results suggest that potentially suitable DRCO habitat
is regionally widespread, we encourage further research
in four specific topics. First, we encourage additional
field-based surveys to verify the presence of DRCO within
potentially suitable patches. Second, our results can be
used to identify gaps in the existing network of conserva-
tion lands. Third, we recognize that our thresholds for
defining suitability classes may not be ideal for all conser-
vation applications and encourage managers to consider
how different threshold values may affect their manage-
ment objectives. In particular, the threshold between

unsuitable and low suitability may need to be lower in
situations where a more liberal definition of potentially
suitable habitat is warranted. Finally, we encourage addi-
tional efforts to empirically delineate and quantify poten-
tial DRCO population units using our estimates of
habitat suitability in conjunction with population viabil-
ity modeling.

CONCLUSIONS

Broad-scale estimates of habitat suitability that account
for geographic variation in species ecology are essential
for successful implementation of regional conservation
programs. Our work demonstrated how a continuous
environmental predictor, specifically winter temperature,
can be used to model geographic variation in habitat
associations across a species’ range, resulting in more
accurate model predictions. We suspect that this method-
ology is broadly applicable to other taxa exhibiting spatial
variation in habitat associations along relatively simple
geographic gradients. We encourage future research to
evaluate this hypothesis, particularly in study systems
with spatially complex geographical variations in habitat
associations. As interactive effects may reduce model
transferability to novel environments, we encourage
practitioners of our approach to use rigorous spatially
explicit cross-validation to validate model predictions.
Finally, the opportunistically collected data used in this
project not only highlight the utility of these datasets, but
also that sampling biases and inconsistences across large
areas are often present. These biases should be addressed
during the modeling process, and the consequences of
spatial sampling biases on interpreting model predictions
should be acknowledged.
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