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ABSTRACT. – With populations declining across their geographic range, the spotted turtle
(Clemmys guttata) is currently a species of conservation concern. Though broadly distributed,
the species is particularly enigmatic at its southern periphery, and many aspects of its ecology
and population biology in this portion of the range have either just recently been described or
are currently unknown. One of the current knowledge gaps is a robust assessment of the popula-
tion genetics of the southern populations. We collected tissue samples from 204 spotted turtles
from 5 sites across South Carolina, Georgia, and Florida and used 11 microsatellite loci to inves-
tigate the genetic diversity and population structure in these populations. We found that south-
ern populations exhibited low, but significant, population differentiation (mean FST¼ 0.062) and
each site clustered as its own genetic group. Genetic diversity across sites was comparable to esti-
mates reported for northern populations. Net effective population sizes were generally robust
and no populations showed indication of recent bottlenecks. Our results suggest that populations
inhabiting relatively intact environments do not appear to face immediate threats from past loss
of genetic diversity. However, continued monitoring, both demographic and genetic, of this long-
lived species is an important management goal to insure that continued global changes do not
threaten population viability.
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Biodiversity is a term used to encompass the diver-
sity of species, the genetic variation they possess, and the
ecosystems that they form. Currently, the world is experi-
encing rapid declines in the number of species at rates
unprecedented in human history (Gugerli et al. 2008;
Ceballos et al. 2015; Cafaro et al. 2022). The loss of
genetic variation has been demonstrated to have serious
implications on the persistence of species (Spielman et al.
2004; Gugerli et al. 2008; Allentoft and O’Brien 2010) as
genetic diversity is an important component for the long-
term survival and adaptive potential of wild populations
(Forest et al. 2007). The field of conservation genetics
arose, in part, to evaluate, address, and mitigate these
issues (Hedrick 2001). In particular, conservation genetics
incorporates tools from the field of population genetics to
quantify levels of genetic variation and characterize geo-
graphic patterns of genetic structure that may arise from
nonrandom mating, population bottlenecks, physical barri-
ers between populations (including habitat fragmentation),
and other limitations to gene flow.

The southeastern United States is a global biodiver-
sity hotspot (Noss et al. 2015) that includes a diverse tur-
tle assemblage (Buhlmann et al. 2009). However, turtles
are among the most imperiled vertebrate groups on the
planet (Lovich et al. 2018). Among their major threats
are habitat fragmentation, degradation, and alteration as
well as their collection from the wild (Moll and Moll
2004; Beaudry et al. 2008; Buchanan et al. 2019a;
Howell and Seigel 2019), all of which can lead to popu-
lation declines. Because turtles exhibit a life history
characterized by delayed sexual maturity coupled with
high adult survivorship (Congdon et al. 1994), turtle
populations can be especially sensitive to the loss of
even a small number of adults (Howell et al. 2019).
Smaller turtle populations are more susceptible to the
loss of genetic diversity due to genetic drift, and in
extreme cases, bottleneck effects (Luikart et al. 1998;
Kuo and Janzen 2004). Because the loss of genetic
diversity can affect the long-term survival of a species
(Lande and Shannon 1996; Lai et al 2019), an important



aspect of turtle conservation should be an evaluation of
both demographic and genetic viability.

One turtle species that has experienced range-wide
declines in recent years is the spotted turtle (Clemmys gut-
tata). Spotted turtles are small freshwater turtles with a
geographic distribution that ranges across most of the east-
ern United States, from Florida to Maine, and stretches into
parts of the Midwest, the Great Lakes region, and south-
eastern Canada (Ernst and Lovich 2009). Like many turtle
species, spotted turtle populations face a myriad of threats,
particularly in the form of habitat destruction and fragmen-
tation (Beaudry et al. 2008; Buchanan et al. 2019a, 2019b;
Howell and Seigel 2019), increased predation from human-
subsidized predators (Browne and Hecnar 2007), and col-
lection for the pet trade (Buhlmann and Gibbons 1997;
Meylan 2006). Relatively high risk of extinction has been
documented even in populations inhabiting pristine envi-
ronments (Enneson and Litzgus 2009) and anthropogenic
disturbances can increase the risks of population declines
(Beaudry et al. 2008; Howell and Seigel 2019). Because of
the many threats that spotted turtles face, the species was
petitioned for federal listing under the US Endangered Spe-
cies Act in 2012. The US Fish and Wildlife Service (2015)
suggested that there is information enough to indicate the
species may warrant federal listing. The species is already
listed as Endangered on the International Union for Conser-
vation of Nature Red List (van Dijk 2011) and as Endan-
gered in Canada (Browne and Hecnar 2007). Range-wide
status assessments for the species are currently underway in
the US portion of the range, including widespread survey
work, genetic analyses, and population modeling, for the
forthcoming listing determination scheduled for 2023.

Despite the species’ broad geographic distribution,
until recently most studies of the spotted turtle have been
conducted in the northern half of its range. For instance,
studies of reproductive biology (Ernst 1970; Litzgus and
Brooks 1998), ecology (Litzgus and Brooks 2000; Litzgus
et al. 1999; Ernst 1976), habitat use (Beaudry et al. 2009;
Rasmussen and Litzgus 2010), and population genetics
(Davy and Murphy 2014; Anthonysamy et al. 2018;
Buchanan et al. 2019b) have been conducted in popula-
tions in the northern or midwestern United States and
southern Canada. The work conducted by Litzgus and
Mousseau (2003, 2004a, 2004b) at a site in South Caro-
lina is the one notable exception. Recently, we have
described several aspects of spotted turtle ecology using
data from 2 Georgia populations and opportunistic obser-
vations from Florida (Chandler et al. 2019, 2020, 2022).
However, there remain important gaps in our understand-
ing of the ecology and status of the spotted turtle in the
southern portion of its range. Perhaps most notable is the
absence of an evaluation of the genetic diversity of turtles
in this region.

Spotted turtles inhabit a variety of wetland types, typ-
ically characterized by shallow water depths and abundant
vegetation (Milam and Melvin 2001; Rasmussen and
Litzgus 2010). Some of these habitats are ephemeral and

spotted turtles, especially in the southern portion of their
range, are known to spend long periods on land when
wetlands dry (Litzgus and Brooks 2000; Rowe et al.
2013; Chandler et al. 2020). Historically, populations
may have inherently experienced some levels of isolation
due to the ephemeral, discontinuous nature of wetland
habitats, but these systems have become increasingly iso-
lated over time as wetlands have been drained for devel-
opment or converted to other uses and an increasingly
dense road network has bisected the landscape (Buchanan
et al. 2019a). The loss and fragmentation by roads of
these small wetlands may reduce the probability of suc-
cessful dispersal of turtles on the landscape (Gibbs 1993;
Carter et al. 2000).

Despite the general conservation concern for spotted
turtles, few genetic studies have been conducted (Parker
and Whiteman 1993; Davy and Murphy 2014; Anthonys-
amy et al. 2018; Buchanan et al. 2019b; Scoville 2019).
Here, we present the first assessment of population genet-
ics in spotted turtles in the southern portion of their range.
Our goals were to 1) evaluate the population genetic
structure of the spotted turtle at focal sites in Florida,
Georgia, and South Carolina; 2) compare metrics of
genetic diversity among sites as well as to other published
studies from northern portions of the species’ range; and 3)
characterize the demographic history of the southern popu-
lations by testing them for historic bottleneck events and
estimating effective population sizes. We used the same
microsatellite loci as those used to investigate the popula-
tion genetics of the spotted turtle in southern Canada
(Davy and Murphy 2014) and some of the same loci as
Buchanan et al. (2019b). By using the same microsatellite
loci, we can draw inferences on the genetic diversity of the
species at the southern and northern aspects of its range.
The data presented here increase our understanding of the
genetic health of southern populations and will aid in future
conservation and management of these populations.

METHODS

Study Sites. — We collected spotted turtle genetic
samples from individuals at sites in Florida, Georgia, and
South Carolina (Fig. 1). We have withheld specific loca-
tion information throughout because of collecting con-
cerns in this species. In Georgia, we studied turtles at 2
sites that were approximately 145 km apart. Spotted tur-
tles were typically located in shallow wetlands that were
adjacent to flowing streams or rivers. These wetlands
were often ephemeral in nature and consisted of both nat-
urally occurring and manmade wetlands that were inter-
spersed within the surrounding uplands, creating a
discontinuous wetland complex at both sites (see details
in Chandler et al. 2019, 2020). In Florida, we studied tur-
tles at 2 sites located approximately 50 km apart and 250
km south of the nearest Georgia site, both consisting of
shallow water pools with thick detritus-muck soils
embedded in large swamp and floodplain complexes fed
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and drained by small, low-gradient streams (see details
in Chandler et al. 2022). In South Carolina, we sampled
turtles at a single site (located approximately 160 km
from the nearest Georgia site) that consisted of a large
wetland complex interspersed around several flowing
creeks. This site contained larger areas of open and flow-
ing water than the other sites that were sampled during
this study.

Sample Collection. — We collected tissue samples
for genetic analyses as part of ongoing research and moni-
toring projects across these 5 study sites from 2014 to
2019 (not every site was sampled in every year). Spotted
turtles were captured in the spring (typically February–
May) of each year using a combination of aquatic traps
baited with sardines and visual encounter surveys. Survey
effort varied across years, but we generally attempted to
capture as many turtles as possible in each season over a
1- to 3-wk period. Once captured, we processed all turtles,
recording morphometric data, sex, and shell notch code
for future identification. We collected a single tissue sam-
ple from each captured individual that primarily consisted
of a small tail tip. In rare cases where a tail tip could not
be collected, we collected either a small section of web-
bing from between the toes or shell shavings from the

carapace. We placed all tissue samples in 95% ethanol
and stored them in the freezer prior to genetic analyses.

Molecular Methods. — Total genomic DNA was
extracted from tissue samples or blood samples with a
DNeasy Tissue Kit (QIAGEN Inc). A polymerase chain
reaction was used to amplify the 11 microsatellite loci
(GmuD79, GmuD121, GmuD107, GmuA19, GmuD55,
GmuD87, GmuD88, GmuB08, GmuD16, GmuD21,
GmuD114) identified by King and Julian (2004) following
the cycling parameters of Davy and Murphy (2014), who
used these same loci to characterize genetic structure in C.
guttata populations near the species’ northernmost distribu-
tion. Amplifications were conducted in a total volume of
12.5 ll using 7.76 ll of dH2O, 1.25 ll of 103 standard
Taq (Mg-free) buffer (New England Biolabs), 0.75 ll of 2
mM dNTPs, 0.75 ll of 25 mM MgCl2, 0.25 units of Taq
polymerase (New England Biolabs), 0.4 ll of 10 mM
M13 tailed forward (Boutin-Ganache et al. 2001) and
reverse primers, 0.09 ll of 1 lM labeled M-13 primer
(LI-COR Co), and 20–50 ng of DNA template. Microsat-
ellite alleles were visualized on a polyacrylamide gel
using a LI-COR 4300 DNA analyzer. Alleles were sized
using GeneProfiler ver. 4.05 (LI-COR Co). Each gel
included internal standards as well as turtles of known

Figure 1. Counties where spotted turtle (Clemmys guttata) genetic samples were collected from 2014 to 2019.
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genotypes to facilitate accurate genotyping. Those turtles
missing . 20% of their microsatellite genotype data were
excluded from analyses.

Each locus was tested for Hardy-Weinberg equilib-
rium (HWE) and linkage disequilibrium (LD) using the
genepop package in R v. 3.6.1 (Rousset 2008; Rousset
et al. 2020). A sequential Bonferroni correction was applied
to the alpha value to account for multiple comparisons
(Rice 1989). Loci were checked for null alleles and large-
allele dropout using micro-checker v. 2.2.3 (Oosterhout
et al. 2004). We used GenAlEx v. 6.503 (Peakall and
Smouse 2006) to calculate observed (HO) and expected
(HE) levels of heterozygosity. Allelic richness (AR) and pri-
vate allelic richness (PAR) were calculated by rarefaction in
HP-Rare v. 1.0 (Kalinowski 2004, 2005) to account for
unequal sample sizes across sites. The inbreeding coeffi-
cient (FIS) for each site was calculated using the package
“hierfstat” (Goudet 2005) with 95% confidence intervals
determined by 10,000 bootstrap replicates. We used analy-
sis of variance (ANOVA) or Wilcoxon Rank Sum tests, if
ANOVA assumptions of normality and equal variances
were not met, to evaluate whether there were significant dif-
ferences in allelic richness and levels of heterozygosity
across southern US populations, as well as between south-
ern US and Ontario populations, using metrics published in
Davy and Murphy (2014). All analyses were performed in
the “stats” package built into R v. 3.6.3 (R Core Team
2022) with an alpha value of 0.05. We used FSTAT v.
2.9.3 to calculate pairwise fixation index (FST) values for
sites (h, the unbiased estimator of FST; Weir and Cocker-
ham 1984), with significance testing using 10,000 permuta-
tions of the data and a Bonferroni correction for multiple
comparisons. An analysis of molecular variance (AMOVA;
Excoffier et al. 1992) was used to examine how genetic var-
iation was distributed within and among the 5 sites. This
analysis was performed with Arlequin 3.5 (Excoffier and
Lischer 2010), and statistical significance was determined
by bootstrapping with 16,000 permutations.

We used STRUCTURE v 2.3.4 (Pritchard et al. 2000)
to determine the number of discrete populations (K) of
Clemmys across sites in South Carolina (1), Georgia (2),
and Florida (2). We tested values of K from 1 to 6 using a
model of admixed ancestry and assuming correlated allele
frequencies between groups using population location as a
prior (Hubisz et al. 2009). The program STRUCTURE is
sensitive to uneven sampling across groups (Wang et al.
2017) and because our sampling across sites was uneven,
we used a smaller alpha value than the default (1/�K,
which we estimated as 0.5 for this analysis). For each value
of K, we ran 20 replicates with 750,000 Markov chain
Monte Carlo iterations and a burn-in set at 75,000. We
selected the best value of K by examining the log-likeli-
hood values for each K, the DK method (Evanno et al.
2005) and the estimators (MedMeaK, MaxMeaK, Med-
MedK, MaxMedK) described by Puechmaille (2016) as
calculated by the online program StructureSelector (Li and
Liu 2018). StructureSelector averaged the 20 runs for the

best value of K using Clumpak (Kopelman et al. 2015) and
we visualized the average ancestry coefficient (q) for each
individual with Distruct v. 1.1 (Rosenberg 2004). Because
the DK method detects the uppermost level of population
structure (Evanno et al. 2005), we used a hierarchical
approach and ran subsequent and separate STRUCTURE
runs on groups identified in the original analysis using the
same parameters (Vähä et al. 2007).

To evaluate relatedness or kinship of turtles at a site,
we used the program COLONY v. 2.0 (Jones and Wang
2010). COLONY uses a maximum likelihood method to
determine full- or half-sibling relationships based on the
allele frequencies present at a given site and without
knowledge of parental genotypes. The program identifies
potential dyads of siblings or half-siblings along with an
associated probability score. We used a threshold proba-
bility of 0.9 for both sibship and half-sibship assignments.

We used 2 methods to test for potential population
bottlenecks at each site. The first method used the pro-
gram BOTTLENECK (Piry et al. 1999). We tested for
heterozygote excess (Cornuet and Luikart 1996) using the
2-phased model of mutation with parameters set to 95%
single-step mutation and 5% multistep mutation, as rec-
ommended for studies with , 20 microsatellite loci (Piry
et al. 1999). A Wilcoxon Rank Sum test evaluated the sig-
nificance of the heterozygote excess. The second method
was the M-ratio test (Garza and Williamson 2001), which
compares the number of alleles with their size distribu-
tion. We used the recommended parameters suggested in
Garza and Williamson (2001): a proportion of 1-step
mutations of 90%, an average size of non–1-step muta-
tions of 3.5, and a value of 10 for h. The critical value of
M was calculated from the 95% threshold of 10,000 simu-
lations of an equilibrium population for each of the 5
sites. Lastly, we calculated the effective population size
(Ne) for each site using NeEstimator v. 2.01. The program
uses a bias correction (Waples 2006) of the linkage dis-
equilibrium method (Hill 1981) with 95% confidence
intervals estimated by jackknifing. Mating was assumed
to be random and alleles with frequencies less than 0.02
were excluded from the analysis.

RESULTS

From 2014 to 2019, we collected tissue samples from
204 spotted turtles across 5sites in Georgia, Florida, and
South Carolina. By state, the sample sizes were as fol-
lows: South Carolina (SC-1, n¼ 15), Georgia (GA-1,
n¼ 74; GA-2, n¼ 37), and Florida (FL-1, n¼ 58; FL-2,
n¼ 20). Only 1 locus (Gmu21) showed consistent devia-
tions from HWE and LD and it was excluded from subse-
quent analyses. Two loci showed evidence of large-allele
dropout, but not for all populations. Only 4 turtles were
missing data for . 20% of their loci (2 from GA-1, and 1
from GA-2 and FL-2), thus all subsequent analyses were
performed across the remaining 200 C. guttata at 10
microsatellite loci.
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Genetic diversity metrics averaged across loci were
similar across sites (Table 1 and Supplemental Table S1;
S1; all supplemental material is available at http://dx.doi.
org/10.2744/CCB-1560.1.s1). Mean allelic richness per
site ranged generally between 5 and 6 alleles per site,
except for the FL-1 site, which was the only site with an
average allelic richness , 5. Mean private allelic richness
was , 1 across all sites, but the South Carolina site
tended to have more private alleles, on average, than other
sites, while the Florida sites had fewer. Average levels of
expected and observed heterozygosity across sites were
more consistent, all ranging between 0.61 and 0.72. Aver-
age FIS values were all close to 0 (from 0.034 to 0.053)
with the 95% confidence intervals all overlapping 0 except
for FL-2 (Table 1). None of the differences in average alle-
lic richness, private allelic richness, or observed and
expected heterozygosity across southern sites were signifi-
cant (AR, F¼ 0.26, p¼ 0.902; PAR, v

2¼ 3.12, p¼ 0.538;
HO, F¼ 0.258, p¼ 0.903; HE, F¼ 0.552, p¼ 0.699), nor
were they significantly different when compared with
Canadian sites (AR, F¼ 0.23, p¼ 0.95; HO, F¼ 0.428,
p¼ 0.827; HE, F¼ 0.941, p¼ 0.462). Pairwise FST values
for our populations ranged from 0.032 to 0.077 (mean¼
0.0636 0.008 SD) and were all significantly different from 0
after adjusting for multiple comparisons. These values of FST
tended to be higher between the 2 Florida sites and all other
sites, with few exceptions (Table 2). The AMOVA revealed
that most of the genetic variation was found within sites
(94.6%), but a significant (p, 0.0001) amount represented dif-
ferences among sites (5.4%).

The STRUCTURE analysis also revealed patterns of
genetic structure among sites. A DK analysis initially
found a K of 2 across all populations with site FL-2 fall-
ing out as a discrete population (Fig. 2 and Supplemental
Fig. S1) but with a secondary peak at a DK of 5,

suggesting further hierarchical structuring. For DK¼ 2,
the average ancestry score (q) for group 1 (sites SC-1
through FL-1) was 0.966 0.03 SD, while the average q
score for individuals in the FL-2 site was 0.86 0.09 SD.
The log-likelihood plot began to plateau at K¼ 5, which
agreed with the secondary DK peak (Supplemental Fig. S1).
The second STRUCTURE analysis, excluding the FL-2
population, identified each of the 4 remaining sites as repre-
senting their own genetic groups (Fig. 2). The average q
scores for these groups were as follows: SC-1¼ 0.906 0.02
SD; GA-1¼ 0.956 0.02 SD; GA-2¼ 0.766 0.06 SD;
FL-1¼ 0.716 0.17 SD. The Puechmaille (2016) estimators
agreed with the selection of the best value of K.

Three sites (GA-1, GA-2, and FL-2) met the recom-
mended assumptions of BOTTLENECK (. 29 individu-
als at 10 loci; Piry et al. 1999). None of these 3 sites
showed a significant excess of heterozygosity, suggesting
that these populations have not undergone a bottleneck
event. Furthermore, the M-ratio tests also did not detect
evidence of historic bottleneck events with average M
ratio values ranging from 0.76 (GA-2) to 0.91 (SC-1).
Estimates of Ne ranged from 31.8 to 122.6 (Table 1). The
South Carolina site yielded a negative estimate of Ne,
which the software interprets as infinite. This result can
stem from a large population size at a site or from a lim-
ited number of samples. When it does occur, the lower
end of the 95% confidence interval can be used to approx-
imate Ne (Waples and Do 2008). Only the 2 sites with the
largest sample sizes (GA-1 and FL-2) produced bounded

Table 1. Number of turtles sampled (n), alleles (Na), allelic richness (AR), private allelic richness expected heterozygosity (HE),
observed heterozygosity (HO), and inbreeding coefficient (FIS, with 95% confidence intervals [95% CIs]) averaged across loci for
200 spotted turtles (Clemmys guttata) genotyped at 10 microsatellite loci. Also reported are effective population size (Ne) estimates
and 95% confidence intervals as calculated by NeEstimator (lowest allele frequency used ¼ 0.02).

Site n Na AR PAR HE HO FIS 95% CI Ne 95% CI

SC-1 15 5.7 5.67 0.93 0.684 0.696 0.034 �0.12–0.17 1 66.6–1
GA-1 72 7 5.34 0.37 0.666 0.665 0.010 �0.06–0.07 100.2 52.3–352.9
GA-2 36 6.6 5.38 0.61 0.644 0.621 0.053 �0.003–0.11 122.6 34.9–1
FL-1 20 4.9 4.65 0.19 0.622 0.610 0.049 �0.07–0.19 31.8 11.1–1
FL-2 57 6.5 5.37 0.14 0.719 0.687 0.053 0.004–0.12 96.6 55.6–254.1

Table 2. Pairwise fixation index (FST) derived from 10 micro-
satellite loci across 5 southeastern sites across 3 states. All val-
ues were significantly different from 0.

SC-1 GA-1 GA-2 FL-1

SC-1 — — — —
GA-1 0.045 — — —
GA-2 0.038 0.032 — —
FL-1 0.073 0.077 0.041 —
FL-2 0.056 0.066 0.064 0.075

Figure 2. STRUCTURE bar plots of individual assignment
probabilities for each inferred genetic cluster. Above shows
high level of population structure at a K of 2, and below shows
a K of 4 for remaining populations when FL-2 was excluded
from analysis.
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confidence intervals. Kinship analyses of each population
did not detect any sibling or half-sibling dyads above the
0.9 probability threshold.

DISCUSSION

This study was the first population genetic assess-
ment for spotted turtle populations in the southern portion
of their range, including samples from Florida, Georgia,
and South Carolina. Our results indicate that all 5 popu-
lations included in this study were significantly differ-
entiated from one another and that heterozygosity was
relatively high across all populations. Furthermore, sites
lacked evidence for genetic bottlenecks and generally
possessed similar estimates of Ne. These results are
broadly similar to those from other studies of freshwater
turtle species native to the eastern United States (Tessier
et al. 2005; Mockford et al. 2007; Buchanan et al.
2019b; Liebgold et al. 2023).

The STRUCTURE analysis indicated an initial split
of K¼ 2 populations, but subsequent analysis suggested
that each population clusters as its own genetic group. These
groups reflected moderate (although not insignificant) levels
of population differentiation (average FST¼ 0.063; Wright
1965; Men et al. 2017). Among populations, the first major
split in population structure was found between the FL-2
site and all other sites. Interestingly, the largest pairwise
FST value for FL-2 was actually FL-1 (Table 2), suggest-
ing that it may not be geographic proximity driving some
differentiation among population and that there may be
other cryptic historical barriers responsible for the genetic
differentiation of these populations, as seen in genetic
studies of other Florida taxa (Clark et al 1999; Gaillard
et al. 2017).

The results of our study are comparable to analyses
by Davy and Murphy (2014), who evaluated the popula-
tion genetics of spotted turtles across a comparable spatial
scale in southern Canada, as well as to Buchanan et al.
(2019b) in Rhode Island. Davy and Murphy (2014) also
recovered a K¼ 2 with additional substructure that was
also not explained by site proximity or isolation, and
Buchanan et al. (2019b) found evidence K from 1 to 3
depending on subset analysis. In our study, we used the
same microsatellite loci (Davy and Murphy 2014), or
many of the same loci (Buchanan et al. 2019b), which
allows us to make comparisons between the southern and
northern populations. In species that span a wide breadth
of latitude, there is generally an inverse relationship in
allelic diversity and latitude (Schmitt et al 2002; Schmitt
2007). However, when comparing our dataset to Davy
and Murphy (2014) and Buchanan et al. (2019b), this pat-
tern does not appear to apply to the spotted turtle. The
overall mean for number of alleles across southern popu-
lations is 6.14, and when rarefied across populations, it
ranges from 4.65 to 5.67 (Table 1). Davy and Murphy
(2014) had similar allelic richness across regions (6.75 in
southwestern Ontario and 6.11 in southeastern Ontario)

and across sites (3.18–4.49 in southwestern Ontario and
3.34–4.1 in southeastern Ontario), while Buchanan et al.
(2019b), who used additional loci, found an allelic rich-
ness of 8.59 in their study area, with a mean richness of
4.78–4.97 across sites. Typically for species that have
undergone rapid, postglacial (i.e., post-Pleistocene) expan-
sion, allelic diversity is higher at southern latitudes that
served as refugia rather than at northern latitudes where
the species has recently expanded (Schmitt et al. 2002;
Schmitt 2007; Flight et al. 2012). This result could sug-
gest high connectivity and high levels of gene flow dur-
ing their postglacial expansion, or perhaps the core
range or refugia of the species was located more cen-
trally. Levels of heterozygosity, too, were similar
between Canadian, Rhode Island, and southern popula-
tions. In southwestern Ontario populations, the mean
expected and observed heterozygosities were 0.728 and
0.679, respectively; in southeastern Ontario popula-
tions the mean expected and observed heterozygosities
were 0.707 and 0.718, respectively; and in Rhode
Island mean expected and observed heterozygosities
were 0.68 and 0.66, respectively. The mean expected
and observed heterozygosities across southern popula-
tions were 0.667 and 0.656, respectively, which did not
differ significantly from values published in Davy and
Murphy (2014).

We were able to obtain estimates of effective popula-
tion size (Ne) for 4 of the 5 sites. The lowest effective
population size was for the FL-1 site, which is also the
site with the lowest allelic richness when corrected for
population size. This site is isolated in nature and
although it is the longest monitored site in Florida, only
20 turtles have been detected despite intensive surveys.
BOTTLENECK did detect a genetic bottleneck at this
site, but this site did not meet the assumptions of the anal-
ysis (i.e., , 29 samples; Piry et al. 1999). Therefore, it is
not yet possible to determine if the bottleneck is genuine
or a consequence of limited sample size. Other sites pro-
duced more robust estimates of population size and did
not exhibit signs of genetic bottlenecks (Table 1). Esti-
mates of Ne . 100 are equivalent or larger than most
other published estimates of total population size for spot-
ted turtle populations across their range (Milam and Mel-
vin 2001; Litzgus and Mousseau 2004a; Enneson and
Litzgus 2009; Buchanan et al. 2019b; Howell and Seigel
2019). However, Davy and Murphy (2014) suggest cau-
tious interpretation of these estimates in long-lived spe-
cies, which can retain genetic variation even in the face of
recent demographic declines (Kuo and Janzen 2004;
Lipp�e et al. 2006; Ennen et al. 2011; Pittman et al. 2011).
Thus, continued demographic monitoring of these popula-
tions that ultimately generates robust estimates of abun-
dance or population growth rate and assess the effects of
potential threats to population viability are an important
management goal.

The spotted turtle is a species of high conservation
concern throughout its range and our data indicate that the
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southern populations exhibit similar levels of genetic dif-
ferentiation and allelic richness as was found in other
populations. The southern populations also are no excep-
tion to the threats faced by other spotted turtle populations
range-wide. Fragmentation and isolation of populations
are pernicious threats to the species and threaten to reduce
levels of heterozygosity and increase inbreeding depres-
sion. These risks are exemplified in this study: site FL-1
is a small wetland complex isolated by roads with no
obvious corridors for dispersal. The genetic data pre-
sented in the present study corroborate the survey data
and suggest that this is a small population that may have
experienced a recent genetic bottleneck. However, a limi-
tation of the present study was the inability to directly
compare the differentiation between northern and south-
ern populations. Even across the sites in the southeastern
United States, our analyses indicate each site is its own
genetic group that is demographically and geographically
independent of all others. These results are not too sur-
prising given their geographic distance from one another.

The present study highlights the need for a compre-
hensive range-wide assessment of the population genetics
of the spotted turtle. The genetic data presented herein
provide a cursory rather than mechanistic understanding
of the genetic variation present in southeastern spotted
turtle populations. Furthermore, sampling for this study
took place where turtles were known to occur. Future
research should focus on systematic or a priori hypothe-
sis-driven sampling to identify and genotype additional
populations to provide a higher-resolution picture of the
species’ genetic health in the southeastern United States.
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